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A graphoanalytical method to calculate the process of solidification of an ingot is developed. The
solution is performed for the problem formulated in a unified statement. As a mathematical appara-
tus, the method of equivalent sources is used.

At present, among the wide range of nonlinear problems for determining the temperature field in a
multiphase system involving moving interfaces where liberation (absorption) of heat occurs, one must note
two competent mathematical formulations of the problem: the Stefan statement (with a smooth interface) and
the problem of heat conduction with phase transitions in a temperature range.

By virtue of the nonlinearity (the presence of discontinuities in the fields of heat fluxes at the inter-
face; the dependence of the law of movement of the phase-transition front and the thermophysical properties
on unknown functions), the Stefan problem, in principle, cannot have exact analytical solutions. At the same
time, the solution of the Stefan problem makes it possible to determine the duration of complete solidification
of an alloy, the thickness and the temperature of a solidified layer, the velocity of movement of the crystal-
lization front, etc.

The statement of the problem of heat conduction with phase transitions in a temperature range takes
into account the realization of the phase transition not along a line but in a layer limited by the range of
temperatures Tsol ≤ T ≤ Tliq. Thus, a calculational procedure of this type for the process of ingot solidification
enables one to predict the appearance of structural defects of a metal which arise precisely in the above layer.
A numerical solution of the problem of heat conduction with phase transitions enables one to carry out inves-
tigations of the simulated process of solidification in multidimensional bodies of a complex geometric shape.

Despite the large calculation error in solving applied problems of metallurgical production, one has to
resort rather frequently to an approximate solution of the problems precisely in the Stefan statement. As a
rule, one proceeds in a similar way when it is necessary to use the solution of the corresponding heat-con-
duction problem as a starting point for studying any other problem (for example, calculation of temperature
stresses).

There are many approximate methods intended for solving the Stefan problem: the L. S. Leibenzon
first method [1] (it is based on the assumption of the quasistationary state of the temperature field in a solid
phase), the S. M. Adams method of successive approximations [2] (the exact solution of the classical self-
similar Stefan problem is used), the A. I. Veinik method of elimination of variables [3] (it presupposes a
priori assignment of the temperature-distribution function in a solidified layer), the B. Ya. Lyubov method [4]
(based on the series expansion of the temperature function of a solid phase in the difference of the coordi-
nates of the of an arbitrary point and the crystallization front), the L. S. Leibenzon [5] and G. P. Ivantsov [6]
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second method (the L. S. Leibenzon first method is refined by means of an artificial increase in the latent
heat of solidification to account for the influence of the physical heat of a solidified layer), the I. D. Semikin
and E′ . M. Gol’dfarb correcting method [7] (the heat content of a liquid phase is taken into account), the
method of an instantaneous regular regime, the M. Biot variational method [8], etc.

The above methods differ from each other by the degree of complexity and accuracy of the results.
Therefore, the question of the development of new analytical approaches to solution of Stefan-type problems
aimed at simplifying and increasing accuracy remains topical as before.

In the present work, we investigated thermal processes of crystallization of a massive ingot using the
method of equivalent sources, which showed a good performance in solving a wide class of linear and non-
linear boundary-value problems of heat conduction [9]. The method pertains to a group of equivalent sources
of approximate analytical methods for solution of the problem of heat conduction. In conformity with the
principle of a thermal boundary layer, the process of heating (cooling) is divided into two stages: the inertia
stage (during which heating (cooling) of a body occurs over the cross section) and the regular stage (during
which the temperature of a thermomassive ingot increases (decreases) further).

In the inertia stage of heating (cooling) (0 ≤ Fo ≤ Fo0), the temperature field over the body cross sec-
tion has two zones:

on the unheated (uncooled) part of the ingot cross section (0 ≤ x ≤ b(Fo)): θ(x, Fo) ≅  θ0;
on the heated (cooled) part of the ingot cross section (b(Fo)  ≤ x ≤ 1): θ(x, Fo) = θ1(x, Fo).
In the regular stage (Fo0 ≤ Fo < ∞), the temperature field is described by the single temperature func-

tion θ2(x, Fo). Its initial value is determined from the condition θ2(x, Fo0) = θ1(x, Fo0).
To determine the form of the functions θ1(x, Fo) and θ2(x, Fo), in each stage we write an equation

of the type

1

xm 
∂

∂x
 



xm 
∂θi

∂x




 = fi (Fo) ,     i = 1, 2 ,

(where fi(Fo) are the equivalent sources), which is solved relative to θi. The method of equivalent sources is
described in [10] in greater detail.

In comparison with other methods of a thermal layer, the method of equivalent sources has the fol-
lowing advantages: an explicit determination of an unknown function; accuracy of calculations suitable for
practice (the error is 5−6%).

In developing the procedure for solution of the problem of metal solidification, we considered ingots
of basic geometric shapes: a plate, a cylinder, and a sphere. However, such an approach is easily generalized
to any massive bodies of arbitrary configuration. It will suffice to remember that many scientists and metal-
lurgists (for example, see [3, 4, 7]) suggest replacing the ingot studied by a cylinder with the equivalent
radius

Req = √F ⁄ π ,

where F is the mean cross-sectional area of the body.
The solution of the problem of solidification of a cylindrical ingot (Fig. 1) using the method of

equivalent sources has the following form [11]:
the duration of complete solidification of the ingot is

τ
_
 = τtot − τ0 = τ∗  (1 + β

__
1 + β
__

2) , (1)

the temperature-field distribution in the solidified layer of the ingot and on the surface is
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θ1 (ξ, τ) = θ1
∗  (ξ, l) 




1 − 

V (l) [1 − Φ (ξ, l) ⁄ θ1
∗  (ξ, l)]

Ko [1 + ω1 (l) + ω2 (l)]




 , (2)

θsur (l) = Φsur (l) + 
Ψsur (l)

1 + ω1 (l) + ω2 (l)
 , (3)

where

V (l) = 
Ko ω1 (l)




1 + m [1 − l (τ)]


 l (τ)

  

1 + 
Bi1 l (τ) [1 − l (τ)]

2 [3 + Bi1 l (τ)]

1 + 
Bi1 l (τ) [1 − l (τ)]

2 + Bi1 l (τ)

 ;   Φ (ξ, l) = 
2 + Bi1 ξ (2 − ξ)

2 + Bi1 l (τ) [2 − l (τ)]
 ;

the position of the crystallization front l(τ) at the instant of time τ is

H∗  (l) [1 + β1 (l) + β2 (l)] = 
τ − τ0

Ka Ko
 ,

(4)

the duration of cooling of a superheated melt to the instant of the beginning of solidification is

τ0 = 
1

3 (1 + m) Bi2
 







1 + 

Bi2
4



 − 

2 + 3 Bi2 + Bi2
2

Bi2
 ln 



1 + 

Bi2
2



 + (3 + Bi2) ln (1 + KT)




 . (5)

The proposed solution takes into account the heat which is lost by the solid phase in the course of
intrinsic cooling and the heat content of the liquid phase (superheating). It is obvious from formula (1) that
the presence of such factors can substantially slow down the crystallization process.

In [11], we present formulas for calculating the functions and criteria that enter into Eqs. (1)−(4).
However, for the convenience of practical implementation it seems worthwhile to express their components
in graphic form as well, which considerably simplifies the calculational procedure. This approach makes it
possible to perform calculations for any parameters Ko and Po (Po is Yu. S. Postol’nik’s criterion) and to

Fig. 1. Computational scheme of the process of solidification of an
ingot.
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carry out interpolation only by the Bi1 criterion. In the case of determining the duration of complete crystal-
lization of an ingot, it becomes unnecessary to perform this interpolation.

Practical experience shows that for massive steel ingots cooled in a mold and in air, the Bi1 criterion
does not exceed unity. Therefore, in constructing graphs we took Bi1 = 0.25, 0.5, 0.75, and 1.0. The interme-
diate values can easily be obtained by means of the simplest linear interpolation.

As an example of applying the proposed procedure, we present a calculation of a specific ingot. The
initial data are as follows: weight of the ingot 8 tons, steel grade St. 45, type of mold open-bottom cast iron,
ingot dimensions 0.734 × 0.655 × 2.8 m, thickness of the mold wall δmol = 37 mm, pouring temperature of
the melt T0 = 1530oC, liquidus temperature Tliq = 1490oC, solidus temperature Tsol = 1420oC, the temperature
in the gap Tg = 900oC, heating temperature of the mold Tmol

0  = 150oC, and temperature of the ambient air
Tm = 90oC; the latent crystallization heat is taken to be equal to q = 270 kJ/kg.

Commercial experiments show that the temperature drop between the inner and outer surfaces of the
mold depending on the ingot, the mold, pouring conditions, etc. can reach a considerable value (of the order
of 300oC). The inner mold surface has a temperature of 700−800oC, while in the initial period and on the
separate portions of the inner-mold surface it has a temperature close to the melting temperature of cast iron
(1100oC). The outer-surface temperature is 400−500oC (in pouring into a cold mold) or exceeds this value by
the heating temperature of the mold (in pouring into a hot mold). Therefore, the main function of the heating,
i.e., decrease in the temperature drop, makes it possible to decrease the thermal stresses. In our case, we take
∆Tmol = 250oC.

Then

Tmol
out  = (400 + 500) ⁄ 2 + 150 = 600 oC ;   Tmol

in  = Tmol
out  + ∆Tmol = 600 + 250 = 850 oC .

We determine the rough mean temperature of the solidified metal layer as

T
__

1 = (Tliq + Tg) ⁄ 2 = (1490 + 900) ⁄ 2 = 1195 oC .

For the temperature of the steel T
__

1 = 1195oC its thermophysical characteristics, i.e., thermal conduc-
tivity, heat capacity, and density, have the following values: λ

__
1 = 29.8 W/(m⋅deg), c

_
1 = 0.66 kJ/(kg⋅deg), and

ρ
__

1 = 7.41 tons/m3, respectively.
Now we calculate the mean value of the thermal diffusivity for the solidified metal layer and the

liquid phase (for T2 = T0):

a
_

1 = λ
__

1
 ⁄ (c
_

1 ρ
__

1) = 29.8 ⋅ 3600 ⁄ (0.66103 ⋅ 7.41 ⋅ 103) = 0.0219  m2 ⁄ h ;

a
_

2 = λ
__

2
 ⁄ (c
_

2 ρ
__

2) = 30.6 ⋅ 3600 ⁄ (0.72 ⋅ 103 ⋅ 7 ⋅ 103) = 0.0219  m2 ⁄ h ;

Ka = 0.0219 ⁄ 0.0219 = 1 .

The reduced heat-transfer coefficient α1eq is calculated from the formula [3]

α1eq = 




1

αg

 + 
Req

λmol

 ln 
Rmol

Req

 + 
Req

Rmol (αrad
out + αconv

out )



 .

The unknown values are determined from the graphs (Fig. 2):

αg = 300  W ⁄ (m2⋅deg) ;   αrad
out = 55  W ⁄ (m

2⋅deg) ;   αconv
out  = 11  W ⁄ (m

2⋅deg) ;
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α1eq = 


1
300

 + 
0.391
35.5

 ln 
0.761
0.391

 + 
0.391

0.771 (55 + 11)



 = 54.1  W ⁄ (m

2⋅deg) .

Then we evaluate the necessary criteria:

Bi1 = 
α1eqReq

λ
__

1

 = 
54.1 ⋅ 0.391

29.8
 = 0.71 ;

Ko = 
qρ
__

2

c
_

1 ρ
__

1 (Tsol − Tm)
 = 

270 ⋅ 7

0.66 ⋅ 7.41 (1420 − 30)
 = 0.28 ;

Po = 
q

c
_

2
 ⁄ (T0 − Tliq)

 = 
270

0.72 (1530 − 1490)
 = 9.4 .

From the graphs given in Fig. 3 we determine that

H∗  = τ∗  ⁄ Ko = 0.95 ;   τ∗  = 0.95 ⋅ 0.28 = 0.266 ;

β
__

1 Ko = 0.12 ;   β
__

1 = 0.12 ⁄ 0.28 = 0.432 ;

β
__

2 Po = 0.404 ;   β
__

2 = 0.404 ⁄ 9.4 = 0.043 .

The time of complete solidification in relative τ
_
 and absolute units t

_
 can be calculated from formula

(1):

Fig. 2. Dependence of the heat-transfer coefficients αg, αconv
out , and αrad

out

on the temperatures. T, oC; α, W/(m2⋅deg).

Fig. 3. Graphs of the change in τ∗  ⁄ Ko, Ko β
__

1, and Po β
__

2 as a function
of the criterion Bi1.
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τ
_
 = 0.266 ⋅ (1 + 0.432 + 0.043) = 0.392 ;   t

_
 = 
τ
_
 Req

2

a
_

1

 = 
0.392 ⋅ 0.3912

0.0219
 = 2.74  h .

The discrepancy between the calculated and experimental (2.75 h) time of complete crystallization of
the given ingot amounts to 0.4%, which can be considered to be quite satisfactory in both the accuracy and
simplicity of the calculations. If the heat content of the solid and liquid phases is disregarded, the duration of
solidification will be equal to 1.86 h, which is 32% smaller than the actual duration.

To calculate the surface temperature of the ingot at the instant of its complete solidification, from the
graphs presented in Fig. 4 we find

ω1 Ko = 0.07 ;   ω1 = 0.07 ⁄ 0.28 = 0.25 ;   ω2 Po = 0 ;   ω2 = 0 ;

Ψsur Ko = 0.063 ;   Ψsur = 0.063 ⁄ 0.28 = 0.225 ;   Φsur = 0.345 .

Substitution of the data obtained into Eq. (3) yields

θsur (l) = 0.345 + 
0.225

1 + 0.25 + 0
 = 0.525 ;   Tsur = Tm + (Tsol − Tm) θsur = 30 + (1420 − 30) 0.525 = 760 oC .

Previously, in determining the mean values of the thermophysical characteristics of the metal, the av-
erage temperature was taken to be equal to 11950C. But if the average temperature of the ingot is calculated
as:

Fig. 4. Graphs of the change in Φsur, Ko ω1, Po ω2, and Ko Ψsur as a
function of the solidified-layer thickness.

Fig. 5. Change in H∗  ⁄ Ko, Ko β1, Po β2, and 1/(Ko W∗ ) as a function of
the solidified-layer thickness.
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T
__

1 = (Tsol + Tsur) ⁄ 2 = (1420 + 760) ⁄ 2 = 1090 oC ,

then it is obvious that it differs from that taken previously by 9%. If necessary, the entire calculation can be
repeated with a new value of T

__
1.

However, ingots in the molds usually arrive at a stripper shop before the crystallization process com-
pletely terminates. And "stripping" of the ingots occurs to the instant of complete solidification as well.

In Fig. 5, the graph of the change in the value of the inverse velocity W∗  of solidification of the
cylindrical ingot is presented, from which it is obvious that beginning with l ≥ 0.8 the solidification velocity
increases rapidly. At this instant the decrease in the intensity of external heat removal (without a mold α is
smaller than with a mold) virtually has little effect on the subsequent process of solidification. Moreover, the
thickness l ≥ 0.8 totally ensures the strength of the shell.

Similarly to the previous procedure, we determine the temperature of the ingot surface for l = 0.8
with the same initial data:

ω1 Ko = 0.142 ;   ω1 = 0.142 ⁄ 0.28 = 0.51 ;   ω2 Po = 0.14 ;   ω2 = 0.14 ⁄ 9.4 = 0.015 ;

Ψsur Ko = 0.052 ;   Ψsur = 0.052 ⁄ 0.28 = 0.19 ;   Φsur = 0.47 ;

θsur (l) = 0.47 + 
0.19

1 + 0.51 + 0.015
 = 0.595 ;

Tsur = Tm + (Tsol − Tm) θsur = 30 + (1420 − 30) ⋅ 0.595 = 857 oC .

The time needed for the solidified layer of thickness l = 0.8 to be formed can be calculated from
formula (4), whose components are partially presented in Fig. 5 in the following graphic form:

H∗  ⁄ Ko = 0.84 ;   H∗  = 0.84 ⋅ 0.28 = 0.235 ;

β1 Ko = 0.11 ;   β1 = 0.11 ⁄ 0.28 = 0.39 ;

β2 Po = 0.425 ;   β2 = 0.425 ⁄ 9.4 = 0.045 ;

τ = 0.235 (1 + 0.39 + 0.045) = 0.337 ;

t = 
τReq

2

a1
 = 

0.337 ⋅ 0.3912

0.0219
 = 2.35  h .

The simplicity of such calculations allows us to recommend the described above graphoanalytical
method for practical engineering computations of the main criteria for the process of crystallization of metal-
lurgical ingots.

NOTATION

T, temperature; ∆Tmol, temperature drop over the mold thickness; R, radius; t, time; τ, dimensionless
time (Fourier number); τ

_
, duration of complete solidification; τtot, duration of solidification with account for

removal of superheating heat; τ0, time of removal of superheating; τ∗ , time of solidification of the ingot by
Leibenzon’s solution [5]; β

__
1 and β

__
2, correction functions that take into account the heat content of the solid

and liquid phases (superheating) in calculation of the thickness of the solidified layer; θ, dimensionless tem-
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perature; θ∗ , dimensionless temperature obtained from Leibenzon’s solution; ξ = r ⁄ R, dimensionless coordi-
nate; r, running radius; x, running coordinate; l = L ⁄ R, thickness of the solidified layer; L, thickness of a
growing solid skin; Ko, Kossovich criterion; ω1 and ω2, correction functions that take account into the heat
content of the solid and liquid phases (superheating), respectively, in calculation of the temperature field; Ka

= a2
 ⁄ a1, dimensionless parameter; a, thermal diffusivity, KT = (T0 − Tliq)/(Tsol − Tin), dimensionless parameter;

m, shape factor of the body (m = 0 for the plate; m = 1 for the cylinder; m = 2 for the sphere); α, heat
transfer coefficient; Bi, Biot criterion; H∗ , function that takes into account the law of movement of the crys-
tallization front as a function of time (by Leibenzon’s solution); Ψsur, dimensionless parameter; b, heated
(cooled) portion of the ingot cross section. Subscripts: 0, initial; sol, solidus; liq, liquidus; m, medium; mol,
mold; out, outer; in, inner; g, gap, rad, radiative; conv, convective; sur, surface; eq, equivalent; 1, solid phase;
2, liquid phase.
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